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Structural modifications to the 34-m hour-angle-declination antennas, coupled

with the use of the antennas beyond their intended lifespans, have led to structural

fatigue, as evidenced by damage to the declination drive gear and cracks on the

structural members and gussets. An analysis and simulation were made of the
main antenna structural members. The analysis showed that the total stress to the

antenna structure substantially exceeds the maximum levels recommended by the

American Institute of Steel Construction (AISC). Although each of the separate

static conditions of stress is only 50 percent of the total stress and does not reach

the AISC reduced yield limit, fatigue can and did occur, causing the material to

crack in the weakest places.

I. Introduction

Three 26-m hour-angle-declination (HA-dec) anten-
nas, designed for a lifespan of 20 years, were built in

the early 1960s for the National Aeronautics and Space

Administration's (NASA's) Deep Space Network. After
16 years of operation, the antennas were upgraded to

support near-term and planned flight-project missions to

outer planets. The upgrade increased the diameter of the

antennas from 26 m to 34 m, improved surface dish tol-

erances, and added X-band receiving capability. The an-
tenna modification was called the 26-Meter Antenna S-X

Conversion Project [1].

The design required a structural weight increase of

about 50 percent in both the HA and dec structures to
achieve the desired improvements. In addition, counter-

weight was added to balance the rotating structures. The

total added counterweight on the dec wheel amounted to

200 percent of the initial weight. The ItA wheel also had

a substantial weight increase. Because of these weight ad-

ditions to the original design and the tracking mode of tile
reflector, many stress-reversal conditions occurred in the

structure. These stress reversals eventually caused "fa-

tigue" in some areas. These fatigue conditions are dis-
cussed in this article.

II. Structural Modifications to the Original
Design

Prior to tile 34-m conversion, other modifications were

made to the antennas that required increases in counter-

weight on both wheels. An S-band improvement in the
mid-1960s consisted of the following changes:

(1) The prime focus feed was changed to a

Cassegrainian feed system.

(2) A feedcone and subreflector were added to the
reflector and apex.

(3) A dewar hoist was added.
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(4) Surface panels were replaced with stiffer panels.

(5) Counterweight was added to rebalance the struc-
ture.

The S-X Conversion Project, which was initiated in

1978, consisted of the following changes:

(1) The outer ribs in the reflector were replaced with

longer and stiffer ribs to increase the diameter to
34 m.

(2) The inner structure was reinforced to increase
stiffness.

(3) The quadripod structure was replaced with a
truss-type apex and legs to accommodate a more
accurate subreflector.

(4) The surface panels were replaced with S-X com-
patible panels.

(5) The subrefleetor was replaced with a three-axis

dual-function tiltable subreflector positioner.

(6) The existing feedeone was replaced with a dual-

frequency cone with diehroic plate and ellipsoid
reflector.

(7) Stiffening members were added to the hour-angle
and declination wheel structures as well as to the

pedestal frame.

(8) Counterweight was added to both the hour-angle
and the declination wheels.

(9) The existing hydraulic drive was replaced with a
new electric drive system, including drive skids.

(10) Cable trays were added and new cables were pro-
vided to the feedcone and to the subreflector.

Before the S-X conversion modifications were made,

an extensive optimization design was made of the structure

with the aid of J PL Iterative Design of Antenna Structures

(IDEAS) [2]. An extensive study was also performed on
the bolted connections. All joints were checked for stiff-

ness and acceptable stress levels. One major result of the

study was the decision to stiffen all the bolted connections

by welding all the structural joints, changing the original

pin-jointed space frame to a rigid frame. Because of this

structural joint stiffening, some members are now subject

to end moments in addition to the axial forces; these stiffer

joints reduce the structural deflections. Subsequently, the
antenna movements cause stress reversals as well as rever-

sal of moments in the connections.

The structural stiffness of the various subassemblies

could not be maintained with the individuM member stiff-

ening due to the added weight. Additional accuracy was

obtained by the conversion to a Cassegrainian system and

by setting the panels at a specific antenna position.

Although extensive stiffening took place, the addition

of all the counterweight caused large deflections in the dec-

lination wheel, although this did not affect the pointing

accuracy.

After the S-X conversion was completed, regular an-
tenna maintenance was increased, including the periodic

inspections.

Iii. Antenna Structural Problems

The antenna structural problems all originated from

the additional counterweights on the antenna, beyond the

design-calculated amounts, that were required to balance

the antenna structure. These additional weights resulted

in increased forces acting on the antenna structure during

operation and have led to the problems described below.

A. Gear-Mesh Separations

One of the most serious problems with the antenna

is the excessive declination-axis bullgear-to-pinion separa-
tion that occurs as the antenna is moved from the east

to the west horizon. The gear mesh separates when the

reflector points to the horizon because the counterweight

bends the rim and gear downward, causing a large de-

flection of the declination wheel. This reduced gear-mesh

engagement has twice sheared off tile pinion teeth at the
DSS 12 antenna and three times at the DSS 42 and 61

antennas (Figs. 1 and 2). The gear-mesh separation in-

creases during high winds, so the antennas are currently

stowed before the wind reaches 45 mph.

B. Hour-Angle Bearing Deterioration

There are two bearings on the hour-angle shaft, tile

upper and the lower bearings. The lower bearing was

designed with plenty of safety margin (of 2.5:1 in fact),

while the upper bearing had a design safety margin of only

1.12:1. Because the antenna needed more counterweight
than the design indicated, the actual safety margin was

reduced to 0.98, and this margin-decreased even further to

0.95 in winds of 30 mph. There has been excessive wear

and denting in the bearing race for all three antennas. For-

tunately, the slow speed of the antenna (approximately two

revolutions per day) has made this bearing damage tolera-
ble. However, analysis and observation indicates that the

risk of bearing failure is increasing with use.
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C.StructuralFailures

Until March 1989, no major problems were found

on the HA-dec antenna structures except for small weld
cracks and occasional sheared and loose bolts, mostly in

the secondary members and their connections. In April

1989, additional cracked welds were discovered in more

significant areas (e.g., see Fig. 3), but action was post-
poned until after the planned annual inspection in July

1989. A close watch was kept to see if the cracks were get-

ting worse, and this continued until the annual inspection.

On the day of the annual inspection, May 25, 1989,

a major failure was discovered at DSS 12; it must have

occurred between April and May 25. The failure occurred

in a gusset plate near the declination bearing. There are
four such plates, and a crack developed in three of the

four plates. The gusset plates connect primary members

from the wheel rim to the bearings; these members support
the weight of the counterweight and the dec house when

the antenna is looking east or west (Figs. 4 and 5). The

longest crack was 4 in. long (Figs. 6 and 7), while the two
other cracks where only 0.5 in. long. All the cracks looked

recent. (Note that the cracks were very similar to the
gusset plate crack that caused the NRAO 300-ft antenna

to collapse.)

Immediate action was taken to repair the gussets and

reinforce the structural connections (Fig. 8). All minor

repairs were also made at this time.

IV. Analysis and Results

An analysis of the declination-wheel structural fail-

ures was made by the Ground Antenna and Facilities En-

gineering Section's Structural Group. The IDEAS finite-
element model of the HA-dec antenna that was used in

the original S-X conversion design was resurrected to find

the maximum member forces for a 1.0-g loading in the X,

Y, and Z axes. To determine whether the critical stress

level was reached, member forces from the computer out-

put were postprocessed in an HP 41C programmable cal-
culator to obtain maximum and minimum forces in the

structure for any combination of declination and hour an-

gle. For an hour-angle/declination-angle axes-combination

configuration, the angle between the gravity vector and the

principal axes of the structural model becomes a function

of the declination, hour, and latitude angles [3].

Specifications and loading conditions for A-7 steel

with an ultimate yield strength of 33,000 psi were used

(Fig. 10). Three loading conditions were applied to simu-

late three different positions of the antenna (Fig. 9). The
loading conditions that were simulated are the following:

(1) The reflector points at zenith and tlle declination
wheel is vertical. Gravity loads in tlle Z direction.

(2) The reflector points at the east or west horizon
and the declination wheel is horizontal. Gravity
loads in the X direction.

(3) The reflector points at the south horizon and the
declination wheel is vertical. Gravity loads ill the
Y direction.

The worst stresses occurred in loading condition (2)

because a reversal of loads at the east or west position
caused a reversal of stress in the members and their con-

nections, which are the gusset plates. Thus the gusset

plates are subject to stress reversals from (1) combined

compressive stress plus bending stress due to eccentricity

and (2) combined tensile stress plus bending due to eccen-
tricity.

In addition, even if the critical stress levels were never

reached, repeated loading and unloading might eventually
result in failure. This phenomenon is known as "fatigue."

In condition (2), where the loading is reversed from tension
to compression and back again with an additional eccen-

tricity in the connection causing a bending stress, fatigue

is likely to occur. In fact the cracks in the plates occurred

adjacent to the welding, where the parent material was

weakened by weld undercuts.

The American Institute of Steel Construction [4] pro-

vides fatigue design parameters for most connections. The

DSN HA-dec antenna structure falls under Category 1,

which applies for a minimum of 20,000 cycles. This is

equivalent to two applications per day for 25 years. (The

DSN HA-dec antennas are now 27 years old.) Tlle plate or

gusset connection conforms to loading Condition 1 of Cat-

egory E, where the allowable range of stress is 19,250 psi.

The actual total stress from cyclic conditions, tension,

compression, and bending amounts to 27,206 psi, substan-

tially exceeding the range limit of 19,250 psi. Although
each of the separate static conditions of stress is only

50 percent of the total stress and does not reach the re-

duced yield limit, fatigue can and did occur, causing the

material to crack in the weakest places.

V. Conclusions

Estimates were made of the cost and feasibility of ex-

tending the lifespans of the HA-dec antennas for another
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15 years and increasing their reliability. The result indi- in the final design stages. Implementation will start in

cated great cost (on the order of$5M)and along downtime FY90, and the three antennas will be operational in mid
(6 to 8 months). Even after these improvements, the DSN 1993, 1994, and 1995. Until the new network is opera-

would still be lef_ with an antenna network limited in use tional, increased maintenance and observation will be re-

to X/S-band only. quirec[ to keepthe 34-m HA-dec antennas operational.

The TDA Office instead recommended that the three

HA-dec antennas be replaced with 34-m az-el antennas

similar to those in the existing DSN az-el antenna net-

work. These antennas would be equipped with a center-fed

beam-waveguide feed system with the capacity for multi-

frequency transmitting plus improved performance. These

plans have been approved and the antennas are currently

It is planned to continue to inspect the antennas peri-

odically and make repairs if required. The antennas will
not be subjected to any further increase in loads because

of additional microwave system modifications during their

currently estimated future lifespan, which is planned to

be complete when the 34-m beam-waveguide replacement
antennas become operational.
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Fig. 1. Broken pinion teeth o| declination wheel drives, DSSs 42 and 61.
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Fig. 2. Pieces of broken pinion teeth from the declination wheel drive, DSS 42.

Fig. 3. Typical crack in the polar wheel structural member, DSS 12.
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DECLINATIONBEARING
SUPPORTEDBY THE
POLAR WHEEL STRUCTURE

INATION WHEEL MEMBER
THAT CARRIES LOADS FROM
COUNTERWEIGHT AND
DEC-HOUSE TO THE BEARINGS

BOTTOM OF WHEEL AND
COUNTERWEIGHT

Fig. 4. The 34-m HA-dec structural support structure, DSS 12.
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Fig. 5. Hour-angle and decllnatlon wheel support structure, DSS 12.
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CRACK
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3 1/2 in.
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THICK
PLATE
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1
1/2-in.-THICK
PLATE ADDED TO
REPAIR JOINT -
WELDED BOTH SIDES

Fig. 6. Failed Jointdetail drawing, DSS 12.

Fig. 7. Cracked gusset, Inboard side, DSS 12.
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Fig. 8. Repair of tailed joint, DSS 12.

ELEVATION WHEEL VIEW A-A
SIDE VIEW

Fig. 9. Computer model of declination wheel.
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5 86 • AISC Specification (Effective 1111178) -

SECTION BI LOADING CONDITIONS; TYPE AND

LOCATION OF MATERIAL

In the design of members and connections subject to repeated variation of

live load stress, consideration shall be given to the number of stress cycles, the

expected range Qf stress, and the type and location of member or detail.

Loading conditions shall be classified as in Table B1.

The type and location of material shall be categorized as in Table B2.

SECTION B2 ALLOWABLE STRESSES

The maximum stress shall not exceed the basic allowable stress provided in

Sects. 1.5 and 1.6 of this Specification, and the maximum range of stress shall not

exceed that given in Table B3.

Fillet Base metal at intermittent fillet

welded welds.

connec-

tions Base metal at junction of axially loaded

--'] members with fillet welded end con-nections. Welds shall be disposed
about the axis of the member so as to

balance weld stresses.

Weld metal of continuous or inter-

mittent longitudinal or transverse fillet

welds.

T or Rev. E

T or Rev. E

S F 5,17,18,21

, "T" signifies range in tensile stress only; "Rev." signifies a range involving reversal of tensile

or compressive stress; "S" signifies range in shear including shear stress reversal.

b These examples are provided as guidelines and are not intended to exclude other reasonably

similar situations.

27

Fig. BI. Illustrative examples

TABLE B3

ALLOWABLE RANGE OF STRESS (if, r), KSI r v/

L---
Category Loading Loading Loading Loading

(From Condition 1 Condition 2 Condition 3 Condition 4

Table B2) Far I F_r2 F.,r._ Fsr4

A

B

C
D

[ E

60
45

32
27

21 ]
15

36
27.5

19
16

12.5

12

24
18

13
I0

8
9

24

16

10 a
7

5
8

a Flexural stress range of 12 ksi permitted at toe of stiffener welds on webs or flanges.

NOTE

THIS TABLE IS FOR

A-36 STEEL AND
SHOULD BE REDUCED
FOR A-7 STEEL BY
9 PERCENT TO
PRODUCE A VALUE
OF 19.25.

Fig. 10. Reference chart excerpted from [4]. (Reprinted by permission of the American Institule of Sleel

Construction, copyright 1980.)
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